
Optimizing modern pathfinding methods
In Imperfect 2D Environments

Luc Shelton

University of Derby

Department of Business, Computing and Law

Derby, United Kingdom

lucshelton@gmail.com

Abstract—As a common means of generating pathfinding

within games today, methods such as A* and greedy best-first

search utilize heuristics with path costs to determine early on in

the path generation what is the most optimal route. While the end
result is most certainly plausible, it can be proven to be somewhat

expensive on the CPU to generate within large environment,

especially as the game state may change during the traversal

between point A and point. As a means of looking further into

this issue, I aim to determine whether or not there are methods
that can be taken to adjust the already generated paths so that a

smooth and less-expensive traversal from two given points can be

accomplished.

Keywords—pathfinding; dynamic; path; D* Lite; A*;

heuristics; artificial intelligence; LPA*; games; JPS; Jump-Point-

Search

I. INTRODUCTION

Pathfinding within games has long been considered as an
area of concern for being a computational bottleneck. This is

reaffirmed when AI is required to constantly generate several
new path plans in a small timeframe [6]. As a cause for

research, we decided to pursue other ideas that would optimize

the way that agents moved around a given environment that
happens to change every so often. As a test-bed for our

research we will be carrying out a series of tests on a game we
have developed called of Ant Frenzy. Previously we have

attempted to utilize path smoothing methods such as Bezier
curves [12] in an attempt to cut the path traversal times , and

display a natural traversal of the path by the ants in our game.

We discovered that in some instances this wasn’t necessary
considering the effect that the physics had on the ants within

the game. Therefore we aim to carry out research into alternate
methods that are applied to achieve the generation of a path

quickly and accurately. The rules of Ant Frenzy is simple, in
order to win the game, you must ensure that the enemy ants are

not able to eat the cake that is positioned somewhere within the

level for a fix period of time. Within this paper, we aim to
determine whether it is possible to find a suitable trade-off

between computation, memory and traversal times and given
the environment in which they are used, which one would be

the most appropriate and why. Moreover, we aim to determine
whether dynamic re-planning algorithms are more optimal in

every situation in which the agent will be forced to update the
path.

II. RELATED WORKS

A. A* Pathfinding

Considered to be the most commonly utilized informed

pathfinding method in games, this algorithm takes into

account three values that determine the strength of nodes

during the search process of the path. These are considered to

be the G cost (accumulative cost), H cost (heuristic) and F cost

(both combined). Furthermore, two lists are used of which one

is considered as the closed, and the other being the open. Upon

each iteration (until the goal state is found), the eight-

neighboring nodes of that one that is being actively observed

during the search are placed into the open list and the current

node that is being observed is then added to the closed list.

The open list is considered to be a list of potential nodes that

are to be observed when finding the next node to move onto

during the search. The closed list on the other hand is the

collection of nodes that we know are going to be used during

the path back-propagation process. During each search, the

node that has the lowest F cost within the open list is then

selected to be the next node that is observed for its

neighboring nodes. This loop continues repeatedly until the

search discovers the goal node to be one of the neighboring of

the one that is being actively searched. The path is then

reconstructed through the parent of each node that is stored in

the closed list.

It’s noted that making use of a priority queue ensures that

the during the search procedure, the node with the lowest F

score is always placed at the front of the list. This is so that

when the Pop function is called, it is removed and provided to

the user [9]. This means that there is less computation time

spent searching linearly through the open list for the node with

the lowest F score. Additionally it is also recognized that A*

does not make use of any kind of re-planning information and

when required to regenerate, it will restart from the beginning.

B. LPA* Pathfinding

 Based on the A* pathfinding method, LPA* applies the

finite graph problem on known environments where the edge
costs (i.e. grid spaces) increase and decrease over time [2].

LPA* will always determine the shortest path from a given

start vertex to a given goal vertex based on the information that

is generated from previous planning iterations (previously
stored edge costs). The variables that are used during the

process are represented by an RHS and G cost. Should the RHS
and G cost never equal the same then they are considered as

locally inconsistent.

The G cost, just like with A*, is considered as the accumulative

cost of traversing from the start to where the search node is

actively looking at on the map. Similarly, LPA* also makes use
of the Euclidean distance between the current node to the end

goal to determine its heuristics value as a part of its RHS value.
[2]

C. D* Lite

Sven Koenig [2] proposes a method of pathfinding that

combines the functionality of both D* and LPA* dynamic
path-planning methods. The main difference between the two

algorithms however is that D* Lite takes into account the path
that has already been travelled by applying a K value when

calculating the key of certain nodes . D* Lite was originally

introduced for usage in robotics to find the most optimal routes
within environments that were considered as only partially

visible or otherwise known as imperfect. During the robots
traversal through an unknown environment, the agent would

concern itself with a surrounding eight-connected graph.
Should the robot discover that one of the edges is not

traversable, it changes the cost of that particular node to
infinity. It was for this reason that information regarding the

environment had to be stored to allow for smoother re-planning

in the future should the agent (either a robot or in-game AI)
discovers an obstacle. The premise of D* Lite works in a

similar fashion to A* however there are some notable
differences. Should there be no changes to the environment,

then it will generate a path just like A* in that it will simply
search based on the smallest returned Euclidean heuristics. On

the other hand, should there be information stored in regards to

the surrounding terrain that the agent is traversing through
then, the ComputeShortestPath function as stated by Sven

Koenig [2] will check for inconsistencies. Every time an
obstacle is detected within the terrain, the Open List is updated

with locally inconsistent nodes and the CalculateKey [2]
function is used to determine a tuple value that the priority

queue is then ordered lexicographically by. Refer to Fig. 1 to

understand the layout of the key.

First

Min(G(x),RHS(x)+H(x)) + k value;

Second

Min(G(x),RHS(s));

Fig. 1. The CalculateKey function that is used in the ComputeShortestPath

for ordering the locally inconsistent nodes in the open list [2]

The premise of the algorithm is that it makes use of a new

value called the RHS (Right-Hand-Side) coefficient. This value
is then used to determine when there are inconsistencies within

the finite graph. Determining whether or not there are

inconsistencies in the stored finite graph is used when having

to re-compute the shortest path by attempting to make use of
the path that has already been traversed.

As such, a K value is made use of to store the heuristics
from the current start node to the goal node. If we are to

consider an agent traversing a path, the node that it is currently
on is always considered as the start node. Therefore, when we

update the start of the path, then the heuristic distance between

the new starting point and the current goal is added on to the K
value. This value is then added to all newly calculated keys for

when nodes are added to the open list. This way we avoid
having to go through the open list queue every time

connections between nodes in our finite graph change for
whatever reason.

When the nodes are processed through the open list, their
adjacent vertices are updated accordingly based on whether

node is considered as over consistent and under consistent. The

key difference between the two is that when a node is
considered to be over consistent, it means that there has been

discovered to be a shorter path and it requires now updating.
Under consistent suggests that a path has been discovered to be

blocked and adjacent vertices also require updating too [2].

We aim to determine whether using an algorithm such as

this within a game that has perfect information and

dynamically moving objects, would be a viable option as well.
Additionally we aim to see at what point during the game state

that it would be considered as unnecessary.

D. Hierarchical Pathplanning A* (HPA*)

In contrast to the A* pathfinding method, HPA* applies a

level of abstraction to the environment that the agent is

traversing when determining the best path to take. Taking into

account the idea that path information can quickly be

invalidated based on what can occur within the game state, the

A* method is quickly recognized the waste computation when

it has to typically re-plan again shortly after [5]. Instead,

HPA* discretizes the environment as linked local clusters so

that when path planning has to occurs it is capable of

approximating the quickest path most of the time without any

real problems. This is achieved through conducting pre-

processing before the requesting entity within the game has to

plan a path for the first time. It’s also stated that should the

terrain change at all within the environment, then any of the

locally affected clusters of neighbors are updated and the rest

of the finite graph remains intact.

It is only once the shortest path is approximated through

the usage of the linked neighbours that we then refine the path

by using A*. The right side to the image demonstrated in Fig.

1 demonstrates the approximated path that is generated

through using the pre-processed linked neighbours. This has

been noted as being optimal has agents benefit from not

having to waste computation time should the path have to

change midway through traversal. Furthermore, agents will

immediately have a direction to able to head in within the

environment without any further refinement having been done

to the path.

Path refinement in this context would consist of translating

a path from an abstract level (such as the graph representation

of our terrain), and using A* to determine any kind of

intermediate collisions in the process of the path generation.

Fig. 2. The environment representation used by HPA* when clustering

neighbouring nodes. The S and G lettering denote the start and goal. [5]

E. Theta* Pathfinding

Making usage of the same heuristics as A* pathfinding,

Theta* utilizes the likes of ray-traces to determine the fastest

possible route. A* typically finds the shortest route based on

the visible 8 neighboring nodes that we are observing and

assigns the parents accordingly. Therefore the end result

doesn’t necessarily tend to be the shortest version [3]. This

problem is then solved by not restricting the node within the

search space to having the current node as the parent but

instead, is able to have the same parent as the current node.

This is so long as it is within the line of sight (through ray-

tracing) of the one that is being searched. This combined with

a priority queue [8], means that it is capable of finding the

shortest path most of the time. As mentioned previously, A*

pathfinding constructs its path after it completes its search

through recursively going through the parent of each node

within the closed list. Considering that these parents can be

adjusted based on what is visible through the ray tracing

algorithm, this means that the path can be shortened

substantially.

Fig. 3. Line intersections over blocked nodes (gray tiles) determine where to
use next neighbour as parent.

Typically the Bresenham line drawing algorithm (Fig. 4) is

used to plot points on a grid and similarly this could be seen

used in an environment discretized as a two-dimensional

array. Refer to Fig. 3 for further illustration of its

implementation. This line drawing algorithm is used to

determine whether there is an intersection between the

neighboring node that we are observing and the currently

selected nodes parent that has the lowest F score from the list.

Fig. 4. An image of the Bresenham line drawing algorithm. The cells

coloured gray represent the grid within our game that it would intersect with.

F. Jump-Point Search A*

Based on symmetric pruning previously demonstrated

through the methods of RSR [4], Jump-Point-Search (JPS)

consistently speeds up the speed in which the A* pathfinding

method is performed. This is achieved by neglecting

neighboring nodes during the search procedure based on the

condition of two simple pruning rules. These rules are applied

in both a straight step and diagonal step from the parent of the

current node that is being observed. The aim is to recursively

prune any neighboring nodes to the current node that are

proven to not provide any further optimal path [4]. This is

done by determining the direction of travel from the parent

node to the one that is being currently observed. The nodes

that are then determined as a successor, are placed into the

open list and then further evaluated in a similar fashion to that

of the original A* algorithm in that the node within the open

list that has the lowest F score, is investigated first.

Immediately we can see that this is a huge improvement

over the previous iteration of the A* algorithm, in that we

don’t have to explicitly examine every neighboring node to the

current one that we are examining at the time. Instead

promising neighbours within the open list are examined

recursively jumping in the direction by normalizing the

distance between the node we are examining and its neighbor

(or successor). This means that for the most part we get rid of

wasteful computation by focusing on the ones that are more

relevant to the generation of the path itself. This JPS method

was bench marked by using map information from released

games such as Baldur’s Gate and Dragon Age Origins and as

such was recognized to speed up the A* pathfinding algorithm

up to 3-26 times depending on the map information that was

used at the time. [4]

When compared against Theta*, our alternate method for

path shortening, we can argue that there is a significantly

small memory overhead in comparison considering that the

search procedure itself is preventing nodes from being added

to an open list unless it is considered necessary [3][4]. The

algorithm itself then becomes competitive with the likes of

HPA* in that more times often than not, it will generate a

better path. [4]

Fig. 5. Demonstration of the path jumping rules in both straight step (left)

and diagonal step (right). [13]

Fig. 6. Demonstration of the JPS pathfinding method in Ant Frenzy.

III. CONDUCTED RESEARCH

To further understand the cost of utilizing a pathfinding

method that handles re-planning, we prepared several separate

game environments that that tested our methods of pathfinding
through playability, and optimality. To demonstrate, the four

methods of pathfinding that we will be applying will be an
optimized version of A* pathfinding with priority queues, D*

Lite and Theta* to determine which is considered most
appropriate for re-planning the shortest paths. The set up for

the research will consist of ants navigating within a level

prepared using the .TMX file format and the Tiled map editor
[4]. The end goal for the ants within our test-bed will be an

object resembling a cake.

The first environment consists of a 100x100 grid based

game that will deliberately be intended to be expensive on the
CPU for the pathfinding algorithms we are benchmarking.

From this test, we aim to determine how fast and effective the

heuristics from each of algorithms are. Furthermore, there will
be objects moving within the environment that will block the

path of the ants causing for them to re-plan their paths at a

moment’s notice.

Fig. 7. The level overview of the 100x100 map – The cake is in the bottom

right corner of the map while the starting points are in the top left. Notably
there are several choke points in the map which should conflict with the ants

during traversal.

The second environment resembles the shape of a zigzag –

our aim within this environment is to determine whether given
the shape, the ants are capable of generating the most suitable

and shortest paths to the end goal.

Fig. 8. The level overview of the Zig-Zag map

Each of our environments will contain physical objects that

will move at a random interval, speed, and angle providing for

an interesting challenge for the pathfinding method of choice
by the ants within our game. Should the ants encounter the

obstacles during their traversal of the games environment, they
will be forced to re-plan immediately with their own respective

method of pathfinding. During the research process, we will be
actively monitoring the behavior of the ants to deduct if there

are any anomalies in the way that they generate the paths and

how the behave in response to dynamically moving objects in

the maze.

Lastly, we will spawn 10 separate ants that will make use of

their own path-finding information for each of the path-finding
methods. Red ant will make use of Theta* pathfinding, Blue

ant will make use of D* Lite pathfinding, Yellow ant will make
use of JPS enhanced A* path-finding and the Green ant will

make use of an optimized version of A* with heap-sorted

priority queues.

A. Tools

To conclude the results that we gained from the testing, we

made use of a basic click-wheel interface that enabled us to

spawn obstructions and ants on the fly within the testing

environment.

Fig. 9. Clickwheel interface used for spawning the ants in the environment.

B. Optimisations

1) Theta*

The first problem that we encountered with the Theta*

enhanced A* algorithm was that there were certain scenarios

in which the pathfinding process would not immediately find

the most appropriate path. The problem means that when paths

were being generated, the ray-tracing algorithm (line of sight)

was being used to determine if there was an intersection

between the nodes that we were observing from the open list.

Furthermore we noticed that with the usage of Theta*

within a dynamic environment we were unable to determine if

the path was blocked by simply checking the future path node

that we were heading towards. Instead, to counter this problem

we made use of a 64x64 px bounding box (same size as the

tiles in the level) that’s aligned to the rotation of the ant so that

it could detect for incoming collisions based on the direction

that it was heading in.

C. Heuristics Generation

1) Manhattan Distance

Alternatively known as the rectilinear distance, the

Manhattan Distance is derived from the idea of taxi-cabs

traversing across the Manhattan Island. Because of the lattice

like nature of the buildings, there are numerous ways in which

one could consider the most optimal route from one point to

another [14].

Refer to the below source code to see the Manhattan distance.

Math.Abs(pA.position.X - pB.position.X) * m_StraightCost +

Math.Abs(pA.position.Y - pB.position.Y) * m_StraightCost;

Fig. 10. The code used for the Manhattan distance with a proprietary “straight

cost” in C#.

2) Euclidean Distance

Stemming from Pythagoras theorem, the Euclidean distance is

also considered as the “true distance”, considering that it takes

the straight distance between one coordinate to another [9].

Refer to Fig. 11 for the source that was used to acquire the

distance using Euclidean metrics.

 var _distanceX = pA.position.X - pB.position.X;
 var _distanceY = pA.position.Y - pB.position.Y;

 return Math.Sqrt(_distanceX * _distanceX +

_distanceY * _distanceY) * m_StraightCost;

Fig. 11. The code used for the euclidean distance in C#.

Our intent for making use of several means of heuristics is to

do with what effect that it has with what kind of difference

there is

D. Equations used

1) Bresenham Line Drawing
The Theta* pathfinding algorithm used the means of ray
casting to determine whether the eight-way neighboring node

of the current node within the search space was capable of
reaching the parent of our current node. Referring to Fig. 3, we

can see that the nodes that the line covers are colored in a

darker gray depicting the nodes within the graph that are
detected in the intersection. If we detect an intersection

between the node that we are observing and the parent of the
current node, then set the parent of the observing node to be the

current node. Otherwise, if this is not the case, then the parent
for the nod being observed becomes the parent of the current

node. Still, we can make use of the same algorithm to
determine if there is a collision mid-way through the traversal

of the path. Typically if we were to determine that the path

generated was not traversable, we could do this through using
the line-drawing algorithm and determine at what distance the

box is at and then from there generate a new path if it is
considered necessary.

E. Pathfinding methods

In our experiments we will make use of 4 different

pathfinding methods to determine which provides the most

optimality in regards to path generation and traversal times as

well as memory overhead.

1) D* Lite

As this method is typically used for robots discovering

imperfect environments therefore we will apply the same

method with our ants. As soon as the ants discover a part of

the terrain that wasn’t there during their initial path planning

procedure, it will update the pathfinding object, and then

compute a new path to head in that avoids the newly

discovered obstacle. At the beginning of the game state

however, we will inject the information about tiles that are

considered not passable within the level. Due to the dynamic

moving nature of the boxes however, we shall constantly

check to see if the next path node that the agent is heading

towards (ants) is blocked by a box. If it is, we will update the

algorithm and re-plan accordingly. We will furthermore

conduct another test where there will be no further information

presented to the agent to make use of and therefore will

depend upon enabling the agent to discover obstacles in its

path and update the open hash accordingly.

We additionally aim to demonstrate the usage of the

algorithm without the pre-requisite of having to provide the

terrain information to the agent beforehand. In this sense, it

will make use of the eight-connected graph robot navigation

strategy that is stated in Koenig’s paper [2]. As such, the agent

will be forced to learn about the environment as it re-plans

around the terrain.

2) A* Pathfinding with optimizations

The optimizations that we aim to carry out with this

method is to utilize the likes of a heap sorted priority queue

along with other O(1) based operations to speed up the

pathfinding procedure [8]. During the search procedure of the

algorithm, nodes that are of interest to the agent will be placed

into the open list based on whichever has the lowest F value.

This means that when it comes to determining the next

appropriate node to explore, we can immediately select the

one that is at the top of the queue. This overall speeds up the

search procedure, as we no longer have to carry out a separate

linear search procedure to determine the next node in the list

that we will observe.

Heuristic values for each of the nodes within the game

state environment are stored within a 2D array so that it is

quick to acquire the values that we need when searching

within nested for loops (i.e. observing neighbours). We

recognize that making use of A* means that it won’t get the

same re-planning optimizations as D* Lite however, we aim to

determine in which circumstances it would be necessary to

have an algorithm such as that with a large memory overhead.

3) Theta* - Our implementation of this algorithm will be

combined with the usage of the aforementioned Bresenham

line drawing algorithm. We will experiment between the likes

of the Manhattan and Euclidean distance heuristics to

determine whether or not there is any particular performance

impact with the path generation whatsoever.

4) Jump-Point-Search enhanced A* - As another means of

testing aesthetic based algorithms, we decided to put this

against the likes of Theta* and even dynamic re-planning

based algorithms to determine whether it’s really worthwhile

basing our computation speeds on the memory overhead of

dynamic re-planning methods, or to simply enhance the search

process itself. As stated previously within section II, D* Lite

is capable of generating a path quicly based on previous

iterations of path searches because it reuses the previously

generated path.

F. Results

TABLE I. PATH GENERATION TIMES (ZIG-ZAG)

Distance
Re-planning Times

Pathfinding Method MIN MAX

copy D* Lite (Full Knowledge) 3260 ms 3260 ms

 A* Optimized (Euclidean) 63 ms 63 ms

 A* Optimized (Manhattan) 32 ms 32 ms

 Theta* (Euclidean) 74 ms 74 ms

 JPS A* 0 ms 15 ms

D* Lite (Imperfect
Knowledge)

0 ms 15 ms

TABLE II. PATH TRAVERSAL TIMES (ZIG-ZAG)

Distance
Path Completion Times

Pathfinding Method MIN MAX

copy D* Lite (Full Knowledge) 1 m 41 s 1 m 41 s

 A* Optimized (Euclidean) 1 m 35 s 1 m 35 s

 A* Optimized (Manhattan) 1 m 35s 1 m 35 s

 Theta* 1 m 24s 1 m 24 s

 JPS A* 1 m 33 s 1 m 33 s

D* Lite (Imperfect

Knowledge)
1 m 47s 1 m 47s

TABLE III. PATH GENERATION TIMES (100X100 MAP)

Distance
Re-planning Times

Pathfinding Method MIN MAX

copy D* Lite (Full Knowledge) 1795 ms 1815 ms

 A* Optimized (Euclidean) 780 ms 858 ms

 A* Optimized (Manhattan) 905 ms 918 ms

 Theta* 1023 ms 1125 ms

 JPS A* 16 ms 32 ms

D* Lite (Imperfect
Knowledge)

0 ms 15 ms

TABLE IV. PATH TRAVERSAL TIMES (100X100 MAP)

Distance
Path Completion Times

Pathfinding Method MIN MAX

Distance
Path Completion Times

Pathfinding Method MIN MAX

copy

D* Lite (Imperfect
Knowledge)

2 m 3 s 2 m 3 s

 A* Optimized (Euclidean) 1 m 45 s 1 m 45 s

 A* Optimized (Manhattan) 1 m 44 s 1 m 44 s

 Theta* 1 m 28 s 1 m 28 s

 JPS A* 1 m 38 s 1 m 38 s

IV. ANALYSIS

A. Memory Overhead

As we’ve stated in the related works, D* Lite makes use of

an open hash that stores values of the environment that it

navigates through so the re-planning of a path with the

algorithm, it will be faster to do than the last time. More

notably however, due to the way that it works, whenever a cell

has been changed within the finite graph, it then has to be

updated through the means of the ComputeShortestPath

function that is stated by Koenig [2]. We noticed that in some

circumstances that here was a marginal FPS slow down when

the agent that was utilizing the D* Lite algorithm was

traversing the environment. We believe that this has

something to do with the way that it is cycling through the

open list of inconsistent nodes as it plots the cells that are

considered to be impassable. As such, this is something that

we will have to look into in our later work.

B. 100x100 Map

Immediately we can see that the path generation times

across all the algorithms that were used are ranging between

half a second to just over one second. More surprisingly, we

were expecting that the D* Lite algorithm would be more

optimal in finding a path within a shorter period of time to

begin with while fully informed. We did noticed within testing

however that when we did not inform the pathfinding

algorithm about the terrain, that it was capable of generating a

path much faster. We believe that this is simply down to less

nodes have to be expanded during the computation of the

shortest path.

When the agent was forced to learn about the environment

as stated within Sven Koenig’s paper [2] we were seeing

generation times ranging anywhere between 0 ms to 15 ms

consistently through-out the entire generation process.

Admittedly the path traversal was much slower seeing as it

had to learn about the terrain first, but it managed to arrive at

the goal no longer than 45 seconds more than the other

pathfinding methods. In contrast to Theta*, the path traversal

time as a whole was slower for D* Lite, but we noticed that it

was not of a highly noticeable margin.

More surprisingly however, we were intrigued to see that

JPS A* was capable of generating path plans for the entire 100

x 100 map within a competitive margin of the D* Lite

algorithm. The generation speeds at worse were merely just

over half of the speeds that it took the D* Lite to regenerate

based on the information that it had. Lastly, we noticed that

when making use of the Theta* algorithm there was some

instances where the agent would get caught out on a blocking

tile on the map and was unable to move. After inspection, it

appeared that it was to do with the way that the path was

generated, in that the used line drawing algorithm did not

detect an intersection at that given point and select a better

parent.

C. Zig-Zag

The purpose of this test was to determine how accurate the

path generation was a whether there was any difference at

between the paths when traversing across a simple terrain. As

expected, we noticed that the Theta* algorithm was capable of

generating the sharpest path and as such was able to have the

shortest traversal time overall. Furthermore, A* was capable

of generating a viable path as well but not quite as fast in

traversal as the Theta* of which is understandable.

Moreover we noticed that the performance of the D* Lite

algorithm was questionable both in traversal and the

generation of the path. Considering that the agent had no prior

information regarding the turning points within the map, there

would be slight confusion as it would tend to lean towards the

left part of the maze when descending the level. We assume

that this is simply because the distance heuristics between the

agent and the cake is suggesting that is the most appropriate

direction to head in until it learns the shape of the Zig-Zag.

There were also some unfortunate instances in which the agent

would go back on its path even though it did not necessarily

go towards the cake but then quickly changed again once it

had recognized the environment.

When we enabled D* Lite to also have full awareness of

the environment by informing it of all the impassable nodes, it

took approximately 3 seconds to generate an appropriate path

to the cake. This is surprising considering the size of the

environment but immediately we can deduct this as simply not

being feasible for usage. We attempted to make use of the

algorithm again but this time did not inform the pathfinding of

any of the surrounding environment to the agent. Afterwards

we began recording re-planning times between 0-15ms.

Unfortunately the path traversal was significantly slower than

the other methods.

Lastly, with the usage of the JPS A* pathfinding

enhancement we noticed similar traversal speeds to that of

Theta* start but taking substantially less amount of time to

generate the path as a whole. This is displayed by times

ranging from 0 to 15 ms of which match that of the re-

planning times demonstrated by D* Lite.

FUTURE WORK

Most notably within the research we noticed that utilizing
aesthetic path optimizing methods such as Theta* caused

problems due to the way that we were determining collisions

between the parent of a node and one that is being observed in
the search space. Unfortunately there isn’t complete accuracy

in determining the shortest path which then leads to our ants
getting stuck into the terrain within some circumstances. We

believe that this may simply be down to a granularity issue
when calculating the increments and should this be the case

then it’s something we shall follow up later.

In comparison to our other pathfinding methods, we were
simply able to check whether the next path node that the ant

was traversing to was considered blocked and if so, then to
simply re-plan. While Theta* is a good method for shortening

path traversal times, based on our results we can conclude that
it’s not necessarily appropriate within an environment that

alternates frequently with dynamically positioning objects. In
the future, we could consider improving this problem by

simply placing path nodes in between the points that are

determined by the Theta* algorithm. This way we can check
these nodes during the traversal of the path to determine

whether or not there is a blockage from one of the moving
boxes. This could then be achieved by re-using the line-

drawing algorithm to determine if there are any dynamic boxes
within the environment that intersect our ray-trace checks. If

so, we determine the distance between the box and the ant and

check accordingly. We faced a similar issue with JPS A* too in
that because of the nature of the algorithm, there were no

intermediate nodes that we could use to determine whether
there was a blockage.

Considering the problems that we faced with the
inaccuracies of the Theta* pathfinding method, it would be

considered preferable in the future to make use of something

such as the Jump-Point-Distance. The reason for this is that the
path traversal time is roughly the same and computationally

less expensive. Moreover, the algorithm would be much
friendlier for platforms that suffer from strict memory

constraints such as mobile devices. As another form of
measurement diagnostics, we would like to pursue the idea of

determining the memory consumption of each of these
algorithms in total by determining the size of the path node

objects stored in containers.

If we were to go ahead with some form of incremental
heuristic pathfinding method to be used in our game Ant

Frenzy, then we would consider enabling the sharing of the
heuristic information that is generated when re-planning occurs

in the environment. The reason for this is that we expect within
the game to be a large quantity of ants that would play against

the player. In order to minimalize the memory overhead from

each entity that it is traversing the environment, it would be
beneficial if this information could be shared amongst all the

ants within the game state. An approach like this would require
much more work and revision of the current code that we have

for D* Lite. However considering the behavior of ants are
typically similar to each other when moving as a cluster, we

feel that something like this would be much more appropriate.

To conclude, we strongly believe that the usage of an
algorithm is entirely down to the context that it’s applied in. D*

Lite demonstrated promising results considering the speed at

which it could re-generate its path. Our concern however is
more with the traversal between the current starting point and

the goal. For the most part, it demonstrated that it was worse
than our other algorithm. As such, considering that JPS A*

demonstrated competitive generation speeds and had better
traversal times suggests that perhaps incremental heuristic

pathfinding is unnecessary. Ultimately we will put it down to

how many entities are going to be in the environment at a given
time. The likes of 30 ms path generation times displayed by

JPS A* within a large environment will not display any
performance loss whatsoever should it be a minimal amount of

agents using it repeatedly in the game state.

REFERENCES

[1] X. Sun, W. Yeoh, and S. Koenig, “Moving target D* Lite,” in
Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1 - Volume 1, Richland, SC, 2010, pp.
67–74.

[2] S. Koenig and M. Likhachev, “D*lite,” in Eighteenth national
conference on Artificial intelligence, Menlo Park, CA, USA, 2002, pp.
476–483.

[3] A. Nash, “Theta*: Any-Angle Path Planning for Smoother Trajectories
in Cont inuous Environments,” AI Game Dev, 08-Sep-2010. [Online].
Available: http://aigamedev.com/open/tutorials/theta-star-any-angle-
paths/. [Accessed: 31-Mar-2013].

[4] “Jump Point Search,” Shortest Path. [Online]. Available:
http://harablog.wordpress.com/2011/09/07/jump-point-search/.
[Accessed: 10-Apr-2013].

[5] A. J. Champandard, “Near-Optimal Hierarchical Pathfinding (HPA*),”
AI Game Dev, 11-Oct-2007. [Online]. Available:
http://aigamedev.com/open/review/near-optimal-hierarchical-
pathfinding/. [Accessed: 22-Apr-2013].

[6] A. J. Champandard, “Hierarchical Task Networks for MIssion
Generation and Real-Time Behaviour,” AI Game Dev, 20-Apr-2010.
[Online]. Available: http://aigamedev.com/open/coverage/htn-planning-
discussion/. [Accessed: 20-Apr-2013].

[7] T. Lindeijer, “T iled Map Editor - Main page,” Tiled Map Editor.
[Online]. Available: http://mapeditor.org.

[8] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime Dynamic A*: An Anytime, Replanning Algorithm,” presented
at the Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2005.

[9] P. Lester, “Using Binary Heaps in A* Pathfinding,” Using Binary Heaps
in A* Pathfinding, 11-Apr-2003. [Online]. Available:
http://www.policyalmanac.org/games/binaryHeaps.htm.

[10] “EuclideanDistance - Wolfram Alpha,” Euclidean Distance - Wolfram
Alpha. [Online]. Available:
http://reference.wolfram.com/mathematica/ref/EuclideanDistance.html.

[11] A. J. Champandard, “Pathfinding in Static and Dynamic Environments
and the Future of Multi-core HPA*,” AI Game Dev, 13-Oct-2010.
[Online]. Available: http://aigamedev.com/open/review/hpa-future-
multicore/. [Accessed: 22-Apr-2013].

[12] H. Tulleken, “Bézier Path Algorithms,” devmag.org.za, 2011. [Online].
Available: http://devmag.org.za/2011/06/23/bzier-path-algorithms/.
[Accessed: 11-Mar-2013].

[13] D. Harabor and A. Grastien, “Online Graph Pruning for Pathfinding on
Grid Maps,” Association for the Advancement of Artificial Intelligence,
2011.

[14] E. F. Krause, Taxicab Geometry: An Adventure in Non-Euclidean
Geometry. Dover Publications, 1987.

http://www.policyalmanac.org/games/binaryHeaps.htm
http://reference.wolfram.com/mathematica/ref/EuclideanDistance.html

