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Abstract—As a common means of generating pathfinding 

within games today, methods such as A* and greedy best-first 

search utilize heuristics with path costs to determine early on in 

the path generation what is the most optimal route. While the end 
result is most certainly plausible, it can be proven to be somewhat 

expensive on the CPU to generate within large environment, 

especially as the game state may change during the traversal 

between point A and point. As a means of looking further into 

this issue, I aim to determine whether or not there are methods 
that can be taken to adjust the already generated paths so that a 

smooth and less-expensive traversal from two given points can be 

accomplished. 

Keywords—pathfinding; dynamic; path; D* Lite; A*; 

heuristics; artificial intelligence; LPA*; games; JPS; Jump-Point-

Search 

I.  INTRODUCTION 

Pathfinding within games has long been considered as an 
area of concern for being a computational bottleneck. This is 

reaffirmed when AI is required to constantly generate several 
new path plans in a small timeframe [6]. As a cause for 

research, we decided to pursue other ideas that would optimize 

the way that agents moved around a given environment that 
happens to change every so often. As a test-bed for our 

research we will be carrying out a series of tests on a game we 
have developed called of Ant Frenzy. Previously we have 

attempted to utilize path smoothing methods such as Bezier 
curves [12] in an attempt to cut the path traversal times , and 

display a natural traversal of the path by the ants in our game. 

We discovered that in some instances this wasn’t necessary 
considering the effect that the physics had on the ants within 

the game. Therefore we aim to carry out research into alternate 
methods that are applied to achieve the generation of a path 

quickly and accurately. The rules of Ant Frenzy is simple, in 
order to win the game, you must ensure that the enemy ants are 

not able to eat the cake that is positioned somewhere within the 

level for a fix period of time. Within this paper, we aim to 
determine whether it is possible to find a suitable trade-off 

between computation, memory and traversal times and given 
the environment in which they are used, which one would be 

the most appropriate and why. Moreover, we aim to determine 
whether dynamic re-planning algorithms are more optimal in 

every situation in which the agent will be forced to update the 
path. 

II. RELATED WORKS 

A. A* Pathfinding 

Considered to be the most commonly utilized informed 

pathfinding method in games, this algorithm takes into 

account three values that determine the strength of nodes 

during the search process of the path. These are considered to 

be the G cost (accumulative cost), H cost (heuristic) and F cost 

(both combined). Furthermore, two lists are used of which one 

is considered as the closed, and the other being the open. Upon 

each iteration (until the goal state is found), the eight-

neighboring nodes of that one that is being actively observed 

during the search are placed into the open list and the current 

node that is being observed is then added to the closed list. 

The open list is considered to be a list of potential nodes that 

are to be observed when finding the next node to move onto 

during the search. The closed list on the other hand is  the 

collection of nodes that we know are going to be used during 

the path back-propagation process. During each search, the 

node that has the lowest F cost within the open list is then 

selected to be the next node that is observed for its 

neighboring nodes. This loop continues repeatedly until the 

search discovers the goal node to be one of the neighboring of 

the one that is being actively searched. The path is then 

reconstructed through the parent of each node that is stored in 

the closed list. 

 

It’s noted that making use of a priority queue ensures that 

the during the search procedure, the node with the lowest F 

score is always placed at the front of the list. This is so that 

when the Pop function is called, it is removed and provided to 

the user [9]. This means that there is less computation time 

spent searching linearly through the open list for the node with 

the lowest F score. Additionally it is  also recognized that A* 

does not make use of any kind of re-planning information and 

when required to regenerate, it will restart from the beginning. 

B. LPA* Pathfinding 

 Based on the A* pathfinding method, LPA* applies the 

finite graph problem on known environments where the edge 
costs (i.e. grid spaces) increase and decrease over time [2]. 

LPA* will always determine the shortest path from a given 



start vertex to a given goal vertex based on the information that 

is generated from previous planning iterations (previously 
stored edge costs). The variables that are used during the 

process are represented by an RHS and G cost. Should the RHS 
and G cost never equal the same then they are considered as 

locally inconsistent. 

The G cost, just like with A*, is considered as the accumulative 

cost of traversing from the start to where the search node is 

actively looking at on the map. Similarly, LPA* also makes use 
of the Euclidean distance between the current node to the end 

goal to determine its heuristics value as a part of its RHS value. 
[2] 

C. D* Lite 

Sven Koenig [2] proposes a method of pathfinding that 

combines the functionality of both D* and LPA* dynamic 
path-planning methods. The main difference between the two 

algorithms however is that D* Lite takes into account the path 
that has already been travelled by applying a K value when 

calculating the key of certain nodes . D* Lite was originally 

introduced for usage in robotics to find the most optimal routes 
within environments that were considered as only partially 

visible or otherwise known as imperfect. During the robots 
traversal through an unknown environment, the agent would 

concern itself with a surrounding eight-connected graph. 
Should the robot discover that one of the edges is not 

traversable, it changes the cost of that particular node to 
infinity. It was for this reason that information regarding the 

environment had to be stored to allow for smoother re-planning 

in the future should the agent (either a robot or in-game AI) 
discovers an obstacle. The premise of D* Lite works in a 

similar fashion to A* however there are some notable 
differences. Should there be no changes to the environment, 

then it will generate a path just like A* in that it will simply 
search based on the smallest returned Euclidean heuristics. On 

the other hand, should there be information stored in regards to 

the surrounding terrain that the agent is traversing through 
then, the ComputeShortestPath function as stated by Sven 

Koenig [2] will check for inconsistencies. Every time an 
obstacle is detected within the terrain, the Open List is updated 

with locally inconsistent nodes  and the CalculateKey [2] 
function is used to determine a tuple value that the priority 

queue is then ordered lexicographically by. Refer to Fig. 1 to 

understand the layout of the key. 

First 

Min(G(x),RHS(x)+H(x)) + k value;  

Second 

Min(G(x),RHS(s)); 

 

Fig. 1. The CalculateKey function that is used in the ComputeShortestPath 

for ordering the locally inconsistent nodes in the open list  [2] 

The premise of the algorithm is that it makes use of a new 

value called the RHS (Right-Hand-Side) coefficient. This value 
is then used to determine when there are inconsistencies within 

the finite graph. Determining whether or not there are 

inconsistencies in the stored finite graph is used when having 

to re-compute the shortest path by attempting to make use of 
the path that has already been traversed. 

As such, a K value is made use of to store the heuristics 
from the current start node to the goal node. If we are to 

consider an agent traversing a path, the node that it is currently 
on is always considered as the start node. Therefore, when we 

update the start of the path, then the heuristic distance between 

the new starting point and the current goal is added on to the K 
value. This value is then added to all newly calculated keys for 

when nodes are added to the open list. This way we avoid 
having to go through the open list queue every time 

connections between nodes in our finite graph change for 
whatever reason. 

When the nodes are processed through the open list, their 
adjacent vertices are updated accordingly based on whether 

node is considered as over consistent and under consistent. The 

key difference between the two is that when a node is 
considered to be over consistent, it means that there has been 

discovered to be a shorter path and it requires now updating. 
Under consistent suggests that a path has been discovered to be 

blocked and adjacent vertices also require updating too [2]. 

We aim to determine whether using an algorithm such as 

this within a game that has perfect information and 

dynamically moving objects, would be a viable option as well. 
Additionally we aim to see at what point during the game state 

that it would be considered as unnecessary. 

D. Hierarchical Pathplanning A* (HPA*) 

In contrast to the A* pathfinding method, HPA* applies a 

level of abstraction to the environment that the agent is 

traversing when determining the best path to take. Taking into 

account the idea that path information can quickly be 

invalidated based on what can occur within the game state, the 

A* method is quickly recognized the waste computation when 

it has to typically re-plan again shortly after [5]. Instead, 

HPA* discretizes the environment as linked local clusters so 

that when path planning has to occurs  it is capable of 

approximating the quickest path most of the time without any 

real problems. This is achieved through conducting pre-

processing before the requesting entity within the game has to 

plan a path for the first time. It’s also stated that should the 

terrain change at all within the environment, then any of the 

locally affected clusters of neighbors are updated and the rest 

of the finite graph remains intact. 

 

It is only once the shortest path is approximated through 

the usage of the linked neighbours that we then refine the path 

by using A*. The right side to the image demonstrated in Fig. 

1 demonstrates the approximated path that is generated 

through using the pre-processed linked neighbours. This has 

been noted as being optimal has agents benefit from not 

having to waste computation time should the path have to 

change midway through traversal. Furthermore, agents will 

immediately have a direction to able to head in within the 

environment without any further refinement having been done 

to the path. 



 

Path refinement in this context would consist of translating 

a path from an abstract level (such as the graph representation 

of our terrain), and using A* to determine any kind of 

intermediate collisions in the process of the path generation. 

 

 
Fig. 2. The environment representation used by HPA* when clustering 

neighbouring nodes. The S and G lettering denote the start and goal. [5] 

E. Theta* Pathfinding 

Making usage of the same heuristics as A* pathfinding, 

Theta* utilizes the likes of ray-traces to determine the fastest 

possible route. A* typically finds the shortest route based on 

the visible 8 neighboring nodes that we are observing and 

assigns the parents accordingly. Therefore the end result 

doesn’t necessarily tend to be the shortest version [3]. This 

problem is then solved by not restricting the node within the 

search space to having the current node as the parent but 

instead, is able to have the same parent as the current node. 

This is so long as it is within the line of sight (through ray-

tracing) of the one that is being searched. This combined with 

a priority queue [8], means that it is capable of finding the 

shortest path most of the time. As mentioned previously, A* 

pathfinding constructs its path after it completes its search 

through recursively going through the parent of each node 

within the closed list. Considering that these parents can be 

adjusted based on what is visible through the ray tracing 

algorithm, this means that the path can be shortened 

substantially. 

 
Fig. 3. Line intersections over blocked nodes (gray tiles) determine where to 
use next neighbour as parent. 

Typically the Bresenham line drawing algorithm (Fig. 4) is 

used to plot points on a grid and similarly this could be seen 

used in an environment discretized as a two-dimensional 

array. Refer to Fig. 3 for further illustration of its 

implementation. This line drawing algorithm is used to 

determine whether there is an intersection between the 

neighboring node that we are observing and the currently 

selected nodes parent that has the lowest F score from the list. 

 

 
 

Fig. 4. An image of the Bresenham line drawing algorithm. The cells 

coloured gray represent the grid within our game that it would intersect with. 

F. Jump-Point Search A* 

Based on symmetric pruning previously demonstrated 

through the methods of RSR [4], Jump-Point-Search (JPS) 

consistently speeds up the speed in which the A* pathfinding 

method is performed. This is achieved by neglecting 

neighboring nodes during the search procedure based on the 

condition of two simple pruning rules. These rules are applied 

in both a straight step and diagonal step from the parent of the 

current node that is being observed. The aim is to recursively 

prune any neighboring nodes to the current node that are 

proven to not provide any further optimal path [4]. This is 

done by determining the direction of travel from the parent 

node to the one that is being currently observed. The nodes 

that are then determined as a successor, are placed into the 

open list and then further evaluated in a similar fashion to that 

of the original A* algorithm in that the node within the open 

list that has the lowest F score, is investigated first. 

 

Immediately we can see that this is a huge improvement 

over the previous iteration of the A* algorithm, in that we 

don’t have to explicitly examine every neighboring node to the 

current one that we are examining at the time. Instead 

promising neighbours within the open list are examined 

recursively jumping in the direction by normalizing the 

distance between the node we are examining and its neighbor 

(or successor). This means that for the most part we get rid of 

wasteful computation by focusing on the ones that are more 

relevant to the generation of the path itself. This JPS method 

was bench marked by using map information from released 

games such as Baldur’s Gate and Dragon Age Origins and as 

such was recognized to speed up the A* pathfinding algorithm 

up to 3-26 times depending on the map information that was 

used at the time. [4] 

 



When compared against Theta*, our alternate method for 

path shortening, we can argue that there is a significantly 

small memory overhead in comparison considering that the 

search procedure itself is preventing nodes from being added 

to an open list unless it is considered necessary [3][4]. The 

algorithm itself then becomes competitive with the likes of 

HPA* in that more times often than not, it will generate a 

better path. [4] 

 

 
Fig. 5. Demonstration of the path jumping rules in both straight step (left) 

and diagonal step (right). [13] 

 

Fig. 6. Demonstration of the JPS pathfinding method in Ant Frenzy. 

III. CONDUCTED RESEARCH 

To further understand the cost of utilizing a pathfinding 

method that handles re-planning, we prepared several separate 

game environments that that tested our methods of pathfinding 
through playability, and optimality. To demonstrate, the four 

methods of pathfinding that we will be applying will be an 
optimized version of A* pathfinding with priority queues, D* 

Lite and Theta* to determine which is considered most 
appropriate for re-planning the shortest paths. The set up for 

the research will consist of ants navigating within a level 

prepared using the .TMX file format and the Tiled map editor 
[4]. The end goal for the ants within our test-bed will be an 

object resembling a cake. 

The first environment consists of a 100x100 grid based 

game that will deliberately be intended to be expensive on the 
CPU for the pathfinding algorithms  we are benchmarking. 

From this test, we aim to determine how fast and effective the 

heuristics from each of algorithms are. Furthermore, there will 
be objects moving within the environment that will block the 

path of the ants causing for them to re-plan their paths at a 

moment’s notice. 

 

Fig. 7. The level overview of the 100x100 map – The cake is in the bottom 

right corner of the map while the starting points are in the top left. Notably 
there are several choke points in the map which should conflict with the ants 

during traversal. 

The second environment resembles the shape of a zigzag – 

our aim within this environment is to determine whether given 
the shape, the ants are capable of generating the most suitable 

and shortest paths to the end goal. 

 

Fig. 8. The level overview of the Zig-Zag map 

Each of our environments will contain physical objects that 

will move at a random interval, speed, and angle providing for 

an interesting challenge for the pathfinding method of choice 
by the ants within our game. Should the ants encounter the 

obstacles during their traversal of the games environment, they 
will be forced to re-plan immediately with their own respective 

method of pathfinding. During the research process, we will be 
actively monitoring the behavior of the ants to deduct if there 

are any anomalies in the way that they generate the paths and 



how the behave in response to dynamically moving objects in 

the maze. 

Lastly, we will spawn 10 separate ants that will make use of 

their own path-finding information for each of the path-finding 
methods. Red ant will make use of Theta* pathfinding, Blue 

ant will make use of D* Lite pathfinding, Yellow ant will make 
use of JPS enhanced A* path-finding and the Green ant will 

make use of an optimized version of A* with heap-sorted 

priority queues. 

A. Tools 

To conclude the results that we gained from the testing, we 

made use of a basic click-wheel interface that enabled us to 

spawn obstructions and ants on the fly within the testing 

environment. 

 

 
Fig. 9. Clickwheel interface used for spawning the ants in the environment. 

B. Optimisations 

1) Theta* 

The first problem that we encountered with the Theta* 

enhanced A* algorithm was that there were certain scenarios 

in which the pathfinding process would not immediately find 

the most appropriate path. The problem means that when paths 

were being generated, the ray-tracing algorithm (line of sight) 

was being used to determine if there was  an intersection 

between the nodes that we were observing from the open list.  

 

Furthermore we noticed that with the usage of Theta* 

within a dynamic environment we were unable to determine if 

the path was blocked by simply checking the future path node 

that we were heading towards. Instead, to counter this problem 

we made use of a 64x64 px bounding box (same size as the 

tiles in the level) that’s aligned to the rotation of the ant so that 

it could detect for incoming collisions based on the direction 

that it was heading in. 

C. Heuristics Generation 

1) Manhattan Distance 

Alternatively known as the rectilinear distance, the 

Manhattan Distance is derived from the idea of taxi-cabs 

traversing across the Manhattan Island. Because of the lattice 

like nature of the buildings, there are numerous ways in which 

one could consider the most optimal route from one point to 

another [14]. 

 

Refer to the below source code to see the Manhattan distance. 

 
Math.Abs(pA.position.X - pB.position.X) * m_StraightCost + 

Math.Abs(pA.position.Y - pB.position.Y) * m_StraightCost; 

 

Fig. 10. The code used for the Manhattan distance with a proprietary “straight 

cost” in C#. 

2) Euclidean Distance 

Stemming from Pythagoras theorem, the Euclidean distance is 

also considered as the “true distance”, considering that it takes 

the straight distance between one coordinate to another [9]. 

 

Refer to Fig. 11 for the source that was used to acquire the 

distance using Euclidean metrics. 

 
     var _distanceX = pA.position.X - pB.position.X; 
     var _distanceY = pA.position.Y - pB.position.Y; 
 
            return Math.Sqrt(_distanceX * _distanceX + 

_distanceY * _distanceY) * m_StraightCost; 

 
Fig. 11. The code used for the euclidean distance in C#. 

Our intent for making use of several means of heuristics is to 

do with what effect that it has with what kind of difference 

there is  

D. Equations used 

1) Bresenham Line Drawing 
The Theta* pathfinding algorithm used the means of ray 
casting to determine whether the eight-way neighboring node 

of the current node within the search space was capable of 
reaching the parent of our current node. Referring to Fig. 3, we 

can see that the nodes that the line covers are colored in a 

darker gray depicting the nodes within the graph that are 
detected in the intersection. If we detect an intersection 

between the node that we are observing and the parent of the 
current node, then set the parent of the observing node to be the 

current node. Otherwise, if this is not the case, then the parent 
for the nod being observed becomes the parent of the current 

node. Still, we can make use of the same algorithm to 
determine if there is a collision mid-way through the traversal 

of the path. Typically if we were to determine that the path 

generated was not traversable, we could do this through using 
the line-drawing algorithm and determine at what distance the 

box is at and then from there generate a new path if it is 
considered necessary. 

E. Pathfinding methods 

In our experiments we will make use of 4 different 

pathfinding methods to determine which provides the most 

optimality in regards to path generation and traversal times as 

well as memory overhead. 

 



1) D* Lite 

As this method is typically used for robots discovering 

imperfect environments therefore we will apply the same 

method with our ants. As soon as the ants discover a part of 

the terrain that wasn’t there during their initial path planning 

procedure, it will update the pathfinding object, and then 

compute a new path to head in that avoids the newly 

discovered obstacle. At the beginning of the game state 

however, we will inject the information about tiles that are 

considered not passable within the level. Due to the dynamic 

moving nature of the boxes however, we shall constantly 

check to see if the next path node that the agent is heading 

towards (ants) is blocked by a box. If it is, we will update the 

algorithm and re-plan accordingly. We will furthermore 

conduct another test where there will be no further information 

presented to the agent to make use of and therefore will 

depend upon enabling the agent to discover obstacles in its 

path and update the open hash accordingly. 

 

We additionally aim to demonstrate the usage of the 

algorithm without the pre-requisite of having to provide the 

terrain information to the agent beforehand. In this sense, it 

will make use of the eight-connected graph robot navigation 

strategy that is stated in Koenig’s paper [2]. As such, the agent 

will be forced to learn about the environment as it re-plans 

around the terrain. 

 

2) A* Pathfinding with optimizations 

The optimizations that we aim to carry out with this 

method is to utilize the likes of a heap sorted priority queue 

along with other O(1) based operations to speed up the 

pathfinding procedure [8]. During the search procedure of the 

algorithm, nodes that are of interest to the agent will be placed 

into the open list based on whichever has the lowest F value. 

This means that when it comes to determining the next 

appropriate node to explore, we can immediately select the 

one that is at the top of the queue. This overall speeds up the 

search procedure, as we no longer have to carry out a separate 

linear search procedure to determine the next node in the list 

that we will observe. 

 

Heuristic values for each of the nodes within the game 

state environment are stored within a 2D array so that it is 

quick to acquire the values that we need when searching 

within nested for loops  (i.e. observing neighbours). We 

recognize that making use of A* means that it won’t get the 

same re-planning optimizations as D* Lite however, we aim to 

determine in which circumstances it would be necessary to 

have an algorithm such as that with a large memory overhead. 

 

3) Theta* - Our implementation of this algorithm will be 

combined with the usage of the aforementioned Bresenham 

line drawing algorithm. We will experiment between the likes 

of the Manhattan and Euclidean distance heuristics to 

determine whether or not there is any particular performance 

impact with the path generation whatsoever. 

 

4) Jump-Point-Search enhanced A* - As another means of 

testing aesthetic based algorithms, we decided to put this 

against the likes of Theta* and even dynamic re-planning 

based algorithms to determine whether it’s really worthwhile 

basing our computation speeds on the memory overhead  of  

dynamic re-planning methods, or to simply enhance the search 

process itself. As stated previously within section II, D* Lite 

is capable of generating a path quicly based on previous 

iterations of path searches because it reuses the previously 

generated path. 

 

F. Results 

TABLE I.  PATH GENERATION TIMES (ZIG-ZAG) 

Distance  
Re-planning Times 

Pathfinding Method MIN MAX 

copy  D* Lite (Full Knowledge) 3260 ms 3260 ms 

 A* Optimized (Euclidean) 63 ms 63 ms 

 A* Optimized (Manhattan) 32 ms 32 ms 

 Theta* (Euclidean) 74 ms 74 ms 

 JPS A* 0 ms 15 ms 

 
D* Lite (Imperfect 
Knowledge) 

0 ms 15 ms 

TABLE II.  PATH TRAVERSAL TIMES (ZIG-ZAG) 

Distance  
Path Completion Times 

Pathfinding Method MIN MAX 

copy  D* Lite (Full Knowledge) 1 m 41 s 1 m 41 s 

 A* Optimized (Euclidean) 1 m 35 s 1 m 35 s 

 A* Optimized (Manhattan) 1 m 35s 1 m 35 s 

 Theta* 1 m 24s 1 m 24 s 

 JPS A* 1 m 33 s 1 m 33 s 

 
D* Lite (Imperfect 

Knowledge) 
1 m 47s 1 m 47s 

TABLE III.  PATH GENERATION TIMES (100X100 MAP) 

Distance  
Re-planning Times 

Pathfinding Method MIN MAX 

copy  D* Lite (Full Knowledge) 1795 ms 1815 ms 

 A* Optimized (Euclidean) 780 ms 858 ms 

 A* Optimized (Manhattan) 905 ms 918 ms 

 Theta* 1023 ms 1125 ms 

 JPS A* 16 ms 32 ms 

 
D* Lite (Imperfect 
Knowledge) 

0 ms 15 ms 

TABLE IV.  PATH TRAVERSAL TIMES (100X100 MAP) 

Distance  
Path Completion Times 

Pathfinding Method MIN MAX 



Distance  
Path Completion Times 

Pathfinding Method MIN MAX 

copy  

D* Lite (Imperfect 
Knowledge) 

2 m 3 s 2 m 3 s 

 A* Optimized (Euclidean) 1 m 45 s 1 m 45 s 

 A* Optimized (Manhattan) 1 m 44 s 1 m 44 s 

 Theta* 1 m 28 s 1 m 28 s 

 JPS A* 1 m 38 s 1 m 38 s 

 

IV. ANALYSIS 

A. Memory Overhead 

As we’ve stated in the related works, D* Lite makes  use of 

an open hash that stores values of the environment that it 

navigates through so the re-planning of a path with the 

algorithm, it will be faster to do than the last time. More 

notably however, due to the way that it works, whenever a cell 

has been changed within the finite graph, it then has to be 

updated through the means of the ComputeShortestPath 

function that is stated by Koenig [2]. We noticed that in some 

circumstances that here was a marginal FPS slow down when 

the agent that was utilizing the D* Lite algorithm was 

traversing the environment. We believe that this has 

something to do with the way that it is cycling through the 

open list of inconsistent nodes as it plots the cells that are 

considered to be impassable. As such, this is something that 

we will have to look into in our later work. 

 

B. 100x100 Map 

Immediately we can see that the path generation times 

across all the algorithms that were used are ranging between 

half a second to just over one second. More surprisingly, we 

were expecting that the D* Lite algorithm would be more 

optimal in finding a path within a shorter period of time to 

begin with while fully informed. We did noticed within testing 

however that when we did not inform the pathfinding 

algorithm about the terrain, that it was capable of generating a 

path much faster. We believe that this is simply down to less 

nodes have to be expanded during the computation of the 

shortest path.  

 

When the agent was forced to learn about the environment 

as stated within Sven Koenig’s paper [2] we were seeing 

generation times ranging anywhere between 0 ms to 15 ms 

consistently through-out the entire generation process. 

Admittedly the path traversal was much slower seeing as it 

had to learn about the terrain first, but it managed to arrive at 

the goal no longer than 45 seconds more than the other 

pathfinding methods. In contrast to Theta*, the path traversal 

time as a whole was slower for D* Lite, but we noticed that it 

was not of a highly noticeable margin. 

 

More surprisingly however, we were intrigued to see that 

JPS A* was capable of generating path plans for the entire 100 

x 100 map within a competitive margin of the D* Lite 

algorithm. The generation speeds at worse were merely just 

over half of the speeds that it took the D* Lite to regenerate 

based on the information that it had. Lastly, we noticed that 

when making use of the Theta* algorithm there was some 

instances where the agent would get caught out on a blocking 

tile on the map and was unable to move. After inspection, it 

appeared that it was to do with the way that the path was 

generated, in that the used line drawing algorithm did not 

detect an intersection at that given point and select a better 

parent. 

C. Zig-Zag 

The purpose of this test was to determine how accurate the 

path generation was a whether there was any difference at 

between the paths when traversing across a simple terrain. As 

expected, we noticed that the Theta* algorithm was capable of 

generating the sharpest path and as such was able to have the 

shortest traversal time overall. Furthermore, A* was capable 

of generating a viable path as well but not quite as fast in 

traversal as the Theta* of which is understandable. 

 

Moreover we noticed that the performance of the D* Lite 

algorithm was questionable both in traversal and the 

generation of the path. Considering that the agent had no prior 

information regarding the turning points within the map, there 

would be slight confusion as it would tend to lean towards the 

left part of the maze when descending the level. We assume 

that this is simply because the distance heuristics between the 

agent and the cake is suggesting that is the most appropriate 

direction to head in until it learns the shape of the Zig-Zag. 

There were also some unfortunate instances in which the agent 

would go back on its path even though it did not necessarily 

go towards the cake but then quickly changed again once it 

had recognized the environment.  

 

When we enabled D* Lite to also have full awareness of 

the environment by informing it of all the impassable nodes, it 

took approximately 3 seconds to generate an appropriate path 

to the cake. This is surprising considering the size of the 

environment but immediately we can deduct this as simply not 

being feasible for usage. We attempted to make use of the 

algorithm again but this time did not inform the pathfinding of 

any of the surrounding environment to the agent. Afterwards 

we began recording re-planning times between 0-15ms. 

Unfortunately the path traversal was significantly slower than 

the other methods. 

 

Lastly, with the usage of the JPS A* pathfinding 

enhancement we noticed similar traversal speeds to that of 

Theta* start but taking substantially less amount of time to 

generate the path as a whole. This is displayed by times 

ranging from 0 to 15 ms of which match that of the re-

planning times demonstrated by D* Lite. 

 

FUTURE WORK 

Most notably within the research we noticed that utilizing 
aesthetic path optimizing methods such as Theta* caused 



problems due to the way that we were determining collisions 

between the parent of a node and one that is being observed in 
the search space. Unfortunately there isn’t complete accuracy 

in determining the shortest path which then leads to our ants 
getting stuck into the terrain within some circumstances. We 

believe that this may simply be down to a granularity issue 
when calculating the increments and should this be the case 

then it’s something we shall follow up later. 

In comparison to our other pathfinding methods, we were 
simply able to check whether the next path node that the ant 

was traversing to was considered blocked and if so, then to 
simply re-plan. While Theta* is a good method for shortening 

path traversal times, based on our results we can conclude that 
it’s not necessarily appropriate within an environment that 

alternates frequently with dynamically positioning objects. In 
the future, we could consider improving this problem by 

simply placing path nodes in between the points that are 

determined by the Theta* algorithm. This way we can check 
these nodes during the traversal of the path to determine 

whether or not there is a blockage from one of the moving 
boxes. This could then be achieved by re-using the line-

drawing algorithm to determine if there are any dynamic boxes 
within the environment that intersect our ray-trace checks. If 

so, we determine the distance between the box and the ant and 

check accordingly. We faced a similar issue with JPS A* too in 
that because of the nature of the algorithm, there were no 

intermediate nodes that we could use to determine whether 
there was a blockage.  

Considering the problems that we faced with the 
inaccuracies of the Theta* pathfinding method, it would be 

considered preferable in the future to make use of something 

such as the Jump-Point-Distance. The reason for this is that the 
path traversal time is roughly the same and computationally 

less expensive. Moreover, the algorithm would be much 
friendlier for platforms that suffer from strict memory 

constraints such as mobile devices. As another form of 
measurement diagnostics, we would like to pursue the idea of 

determining the memory consumption of each of these 
algorithms in total by determining the size of the path node 

objects stored in containers. 

If we were to go ahead with some form of incremental 
heuristic pathfinding method to be used in our game Ant 

Frenzy, then we would consider enabling the sharing of the 
heuristic information that is generated when re-planning occurs 

in the environment. The reason for this is that we expect within 
the game to be a large quantity of ants that would play against 

the player. In order to minimalize the memory overhead from 

each entity that it is traversing the environment, it would be 
beneficial if this information could be shared amongst all the 

ants within the game state. An approach like this would require 
much more work and revision of the current code that we have 

for D* Lite. However considering the behavior of ants are 
typically similar to each other when moving as a cluster, we 

feel that something like this would be much more appropriate. 

To conclude, we strongly believe that the usage of an 
algorithm is entirely down to the context that it’s applied in. D* 

Lite demonstrated promising results considering the speed at 

which it could re-generate its path. Our concern however is 
more with the traversal between the current starting point and 

the goal. For the most part, it demonstrated that it was worse 
than our other algorithm. As such, considering that JPS A* 

demonstrated competitive generation speeds and had better 
traversal times suggests that perhaps incremental heuristic 

pathfinding is unnecessary. Ultimately we will put it down to 

how many entities are going to be in the environment at a given 
time. The likes of 30 ms path generation times displayed by 

JPS A* within a large environment will not display any 
performance loss whatsoever should it be a minimal amount of 

agents using it repeatedly in the game state. 
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